Thoughts

Can technology reimagine how we monetise physical space?

Can technology reimagine how we monetise physical space?

What if the drivers of value are change because of technology? What if the grade B office is suddenly in demand because it has scooter charging points, a drone landing pad, a huge space for rechargeable supercapacitors or a convenient booking system that allows it to be occupied and productive 24/7?

To be battery powered or not battery powered - that is the question

While undertaking the R&D work to develop the Beringar Hex, we really wanted to find a way to minimise the management headache that IoT devices can create. Powering the device was very close to the top of that list, so we went and listened to potential customers that had used battery powered devices in the past to gauge the size of the issue. Many had believed the battery life estimates they were given by suppliers, only to discover that, as one put it “we should have invested in Duracell - we seem to be constantly buying batteries!”.

In the end, we opted for a powered device in the end, based on the power-hungry nature of machine vision and the premise that our goal was for our data to become part of the operational model of a building. To do this it needs to become part of the building structure, so power shouldn’t be an issue. That said, we have a number of cases where battery powered devices are in demand. These include trials, proof of concept deployments, short term surveys and unit testing. So, we are still looking for that “perfect battery” that can provide long deployment potential and be easy to manage.

I read an article this morning about the 10 Things the Perfect IoT Battery Should Do and wondered just how far away we are from that perfect battery.

  1. Pack a lot of power into a small space

  2. Efficiently deliver that power quickly, and/or incrementally, as needed for a particular application, without degrading battery capacity

  3. Be easily recharged in a variety of ways, including wirelessly, such as over Wi-Fi networks

  4. Make it simple to remotely monitor battery output, remaining battery life, as well as overall battery health

  5. Avoid self-discharge to hold their charge for extend time periods, even under adverse environmental conditions

  6. Be able to be recharged many times, in a variety of ways, without affecting battery capacity

  7. Avoid emitting waste heat that could cause problems

  8. Last a long time to avoid the need for premature disposal, and be environmentally friendly when finally retired

  9. Be inexpensive enough to allow for widespread deployment in many kinds of IoT devices

  10. Use a flexible design that makes it easy for IoT device makers to incorporate in a wide variety of products

Given we are all experiencing peace dividends from the self-driving car revolution at the moment, perhaps that battery emerge in the next 2-3 years?

Well, with advances in materials such as graphene, we can deal with #1, #2 and #3 - pack a lot of power into a small space, efficiently deliver power, be easily (and quickly) recharged without affecting battery capacity (#6) Indeed, from our discussions with some of the world’s most eminent graphene specialists, we are going to see a huge increase in battery capacity and longevity (#7 and #8) coupled with a reduction in weight and an ability to sculpt units to match the device design more closely (#10). With advances in cloud technology and connectivity, such as LoRaWAN networks, we can easily monitor overall battery health (#4). So, that leaves #5 and #9 to deal with. Perhaps we will see that perfect battery sooner than we think.

Finding the money to go smart

At Beringar, we realised from the very start that the benefits of smart technology in real estate were a combination of quick wins, medium term returns and long term transformations. That's why we launched our sensors as a service model last May. Today, it seems Siemens want to go further to offer their clients a way to procure entire smart buildings as a service, either as new builds or by retrofitting existing buildings. This is an exciting development, especially if backed by a major corporation with deep pockets.

It does, however, throw up a number of important questions, some of which can be answered by the experiences of public-private partnership or public finance initiative projects (PPP/PFI). In these projects the private sector make a return for the transfer of risk of developing infrastructure on behalf of (usually) public sector clients. The contracting process is long, expensive and complex, but the results are a risk free high quality building from which to operate for up to 25 years. One of our co-founders, Paul Byrne, has 15 years experience in this market and is one of the UKs foremost experts on modelling this type of deal. At the end of the day, it breaks back to a complicated financial model that spells out the risk and reward for each party to the contract. 

We would love to see some of the great tools created to manage PPP/PFI contracts be applied to smart building procurement - this such as clear payment mechanisms and comparators studies. These would allow more transparency and enable all concerned to see you the huge upside to going smart.

We stand ready to help. Waiting for your call Siemens 😀 

Do we need smart construction to get smart buildings?

In a report dating back to June 2016, McKinsey & Company looked at the changes needed to improve productivity in the global construction industry (Imagining construction’s digital future). The industry employs 7% of the global workforce, and with a staggering $10 trillion spent each year on new infrastructure, even tiny changes in productivity will have marked effects on both jobs and sector value. But, according to figures presented by Antony Slumbers in a tweet today, the construction industry spends around 1% on R&D compared to tech companies like Amazon who spend 12%. Clearly, there is scope to spend more to achieve greater productivity returns.

Screenshot 2019-01-10 at 11.30.38.png

In our view, truly smart buildings are started on the drawing board. So, if the necessary step of getting them out of the ground is “dumb”, how can we possibly create a smart building? How can we know, for example, that it was built according to the plans; with the materials specified; in weather conditions that were optimum; by people that knew what they were doing, and; were safe while doing it? What impact would this data have on the ongoing use, management and maintenance of the asset? Do we have the spec sheet and is it performing according to spec? If it were a software or hardware package we would, so do we need the same for our buildings along with the mechanisms to check performance against spec?

We think we do, with digital platforms and sensors used before, during and after construction will provide that certainty and a whole lot more besides. The five trends highlighted by McKinsey are really all about platform and sensing capabilities for construction that generate data and insights that can be used to accelerate the build and/or increase the durability of the final output.

Think use pattern feedback; materials durability; occupant satisfaction; repair rates; scheduled vs unscheduled maintenance; thermal and acoustic performance; energy consumption; operational costs. Imagine these statistics being available to the designer, construction firm, lender, developer, owner, occupier and user of the building and think about how quickly innovation would happen once the building is smart from inception.

Creating a UK Health Estate fit for Productivity, Productivity, Productivity

Creating a UK Health Estate fit for Productivity, Productivity, Productivity

Sir Robert Naylor’s report on the future of the NHS estate highlights many issues facing the organisation as it tries to meet the demand of delivering more sophisticated and successful health care to a growing and ageing population. It shows that the NHS estate can be a enabler of more productive healthcare.